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Problem Set # 4

Exercise 1:
Suppose A ∈M(n,F) with F = R or C. If A is self-adjoint, so that

A∗ = A (where (A∗)ij = Aij for all i, j)

it is well known that there is a basis in Fn that diagonalizes the corresponding linear
operator LA : Fn → Fn. (In fact, there is even a basis that is orthonormal with respect
to the standard product in Fn.)
Now, suppose that A is only symmetric, with

AT = A (where (A∗)ij = Aij for all i, j)

When F = R, symmetry is the same thing as self-adjointness, and symmetriy AT = A
suffices to guarantee orthonormal diagonalizability of LA. What happens when F = C?
If A is a symmetric is the same thing as self-adjointness, and symmetry AT = A suffices
to guarantee orthonormal diagonalizability of LA. What happens when F = C? If A is
symmetric A = AT with complex entries, does LA always have a diagonalizing basis?
Prove or give a counterexample.
Solution:

1. If A =

(
a b
b c

)
= AT , the eigenvalues of A in C are roots of PA(A) = (λ −

a)(λ− c)− b2 = λ2 − (a+ c)λ+ (ac− b2), so roots are

λ± =
(a+b)±

√
(a+b)2−4ac+4b2

2
= (a+b)±

√
a2+2ac+c2−4ac+4b2

2

=
(a+c)±

√
(a−c)2+4b2

2
(∗)

There are 2 distinct roots (hence no counterexample) unless (a − b)2 = −4b2 ⇔
a− c = ±2ib. When this condition is satisfied, the single eigenvalue in SpC(LA) is
λ = a+c

2
. We now do ”symbolic” row reduction to see what additional restrictions

on a, b, c make dim(Eλ) = 1 ( in which case LA cannot be diagonalized and we
obtain the desired counterexample)

[LA − λI] =

(
a−

(
a+c
2

)
b

b c−
(
a+c
2

) ) ∼ ( b c−a
2

a−c
2

b

)
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Case 1 If b = 0, we have the special case in which A =

(
a 0
0 c

)
whose eigen-

values are obviously λ1 = a, λ2 = c. The eigenvalues are distinct unless a = c in

which case A =

(
a 0
0 c

)
. But this is already diagonal and we are looking for an

A that cannot be diagonalized.
Case 2 If is b 6= 0, we may continue with the following row operations.

→R1→ 1
b
R1

(
1 b−a

2b
a−c
2

b

)
→R2→R2− d−c

2b
R1

(
1 c−a

2b

0 0

)
The system Ax = 0 therefore has x2 as a free variable and x1 = a−c

2b
x2.

Thus Eλ(LA) = C ·
(

a−c
2b

1

)
will have dim = 1, if 1 a− c = ±2ib and 2 b 6= 0.

It remains only to exhibit an explicit example of such an A. By 1. we may

eliminate ”c” to get A =

(
a b
b a± 2ib

)
, we may even set b = 1 (so 2 is ok); then

A =

(
a 1
1 a± 2i

)
. Finally, we may set a = 0 without violating any constraints.

This gives A =

(
0 1
1 −2i

)
You may now check that sp(LA) = {a+c

2
= i} and

that dim(Eλ=i) is = 1 as required. There are many other examples corresponding
to other choices of a and b 6= 0.

Exercise 2:
Let X = {e1, e2} be the standard basis in the complex inner product space V = C2

equipped with the usual Euclidean inner product (a, b) = a1b1 +a2b2. Let N = {f1, f2}
be the basis such that f1 = e1 and f2 = e1 + e2 and define T : V → V to be the linear
operator such that T (f1) = f1 and T (f2) = 1

2
f2. Obviously N diagonalizes T but the

basis eigenvectors f1, f2 are not orthogonal.

1. Find [T ]X ,X and [etT ]X ,X for t ∈ R.

2. Explain why T cannot be a self-adjoint operator (T ∗ = T ).

3. Explain why there cannot be an ON basis in V that diagonalizes T .

4. Find the solution X(t), t ∈ R, of the vector-valued differential equation

dX

dt
= A ·X(t) with X(0) =

(
1
0

)
where A = [T ]X ,X .

Solution :

1. X = {e1, e2} the standard orthonormal basis in C2 = V ; Y = {f1, f2} with
f1 = e1, f2 = e1 + e2 (not orthonormal). T maps f 7→ f1, f2 7→ 1

2
f2. So
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[T ]YY =

(
1 0
0 1/2

)
is diagonal; Y is diagonalizing basis in V . Now

[T ]XX = [id]XY [T ]YY [id]YX

and since we get: {
f1 = [id]f1 = e1 + 0e2
f2 = [id]f2 = e1 + e2

[id]XY =

(
1 1
0 1

)
and [id]YX = [id]−1XY =

(
1 −1
0 1

)
[T ]XX =

(
1 1
0 1

)(
1 0
0 1/2

)(
1 −1
0 1

)
=

(
1 1/2
0 1/2

)(
1 −1
0 1

)
=

(
1 −1/2
0 1/2

)
Since e[T ]YY =

(
et 0
0 et/2

)
, we have for all t ∈ R,

[etT ]XX = [id]XY [etT ]YY [id]YX

=

(
1 1
0 1

)(
et 0
0 et/2

)(
1 −1
0 1

)
=

(
et et/2

0 et/2

)(
1 −1
0 1

)
=

(
et et/2 − et
0 et/2

)

2. Since X is an orhonormal basis in V , T = T ∗ if and only if [T ]∗XX = [T ]XX . But

[T ]∗XX =

(
1 −1/2
0 1/2

)∗
=

(
1 0
−1/2 1/2

)
is not equal [T ]X ,X , so T ∗ 6= T as operators.
This can also be seen by noting that the eigenspaces Eλ=1 = Cf1 and Eλ=1/2 = Cf2
would be orthogonal if T were self-adjoint, but they are not orthonormal with
respect to usual inner product in C2.

3. The bases Y = {f1, f2} already diagonalizes T and hence Eλ=1(T ) = Cf1, Eλ=1/2(T ) =
Cf2. If some orthonormal basis {u1, u2} diagonalized T the eigenspaces would be
Eλ=1 = Cu1, Eλ=1/2 = Cu2. But ”eigenspaces” are defined without any reference
to ”bases”, so we would have to have Cf1 = Cu1, Cf2 = Cu2 which would make
f1 ⊥ f2. Contradiction.

4. As in Notes, the solution is etA
(

1
0

)
, A = [T ]X ,X =

(
1 −1/2
0 1/2

)
. We have

already computed this: etA = et[T ]X ,X = [etT ]X ,X =

(
et et/2 − et
0 et/2

)
. So X(t) =(

et et/2 − et
0 et/2

)(
1
0

)
=

(
et

0

)
for all t ∈ R.
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Exercise 3:
In V = R3 equipped with the usual Euclidean inner product let M = (Rf3)⊥ where
f3 = (1,−2, 3).

1. Give a formula (y1, y2, y3) = R(x1, x2, x3) in terms of inner products for the linear
operator R : R3 → R3 that reflects vectors across the plane M . Find the image
of the particular vector R(1, 1,−3).

2. Prove that R is an isometry, so that

||R(x)−R(y)|| = ||x− y||

and hence is a bijection R : R3 → R3.

3. Find an ON basis {e1, e2} for M .

4. What is the matrix [R]N ,N with respect to the ON basis N = {e1, e2, e3} such
that e3 = f3/||f3||?

5. Is R : V → V orthogonally diagonalizable? Explain.

Solution:

1. As in the notes, R(v) = v − 2(v, e3)e3 where e3 is any vector of unit length that
is orthogonal to M .
By definition, f3 = (1,−2, 3) is orthogonal to M ; since ||f3||2 = 1 + 4 + 9 = 14,
we may take e3 = 1√

14
(1,−2, 3). Then the formula is

Rv = v−2(v|e3)e3 = v−2
(v|f3)f3
||f3||2

= v− 1

7
(v|f3)f3 = v− (x1 − 2x2 + x3)

7
(1,−2, 3)

In particular, if v = (1, 1,−3), we getRv = (1, 1,−3) = −1
7
((1, 1,−3)|(1,−2, 3))f3 =

(1, 1,−3) + 10
7

(1,−2, 3) = (17
7
, −13

7
, 9
7
).

2. Write v = v|| + v⊥, so ||v||2 = ||v||||2 + ||v⊥||2. Then

RW (v) = v|| − v⊥ and ||RMv||2 = ||v||||2 + ||v⊥||2 = ||v||2.

3. First we need a basis for M , then apply Gram-Schmidt. Now x ∈ M if and only

if 0 = (f3|x) = x1 − 2x2 + 3x3 ⇔ [1,−2, 3]

 x1
x2
x3

 = 0; x2, x3 are free variables

x1 = 2x2 − 3x3, so solution set M = {x : Ax = 0} is given by

x =

 2x2 − x3
x2
x3

 = x2

 2
1
0

+ x3

 1
0
−1
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Hence u1 = (1, 0,−1), u2 = (2, 1, 0) are basis vectors in M . Now, u1 = v1,
e1 = u1

||u1|| = 1√
2
(1, 0,−1).{

u2 = v2 − (v2|e1)e1 = v2 − (v2|u1)u1
||u1||2 = (2, 1, 0)− 2 (1,0,−1)

2
= (0, 1,−1)

e2 = u1
||u1|| = 1√

2
(1, 0,−1)

4. Taking e3 = f3
||f3|| = 1√

14
(1,−2, 3), we get an orthonormal basis X = {e1, e2, e3}.

Since e1, e2 ∈ M , R(ek) = ek − 2(ek, e3)e3 = ek − a1e3 = ek, for k = 1, 2 and

obviously R(e3) = −e3. Therefore, [R]X =

 1 0 0
0 1 0
0 0 −1

. The eigenspaces are

Eλ=1 = Ce3, Eλ=1 = C− {e1, e2} = M and R is orthogonally diagonalizable.

Exercise 4:
Let V = C2 with the usual Euclidean inner product and let T : V → V be the linear
operator whose matrix with respect to the standard ON basis X = {e1, e2} is

[T ]X ,X =

(
7
√

3√
3 5

)
1. Determine the spectrum spC(T ) = {λ1, λ2} and show T is orthogonally diagonal-

izable by finding an ON basis N = {f1, f2} of eigenvectors.

2. Explain why T is self-adjoint.

If an operator is self-adjoint (or merely diagonalizable) it has a spectral decomposition

T =
∑

λ∈sp(T )

λPλ

where Pλ = (projection onto Eλ along ⊕ν 6=λEν) which describes T as a weighted sum
of projections onto the eigenspaces.

3. Find the matrices [Pλk ] that describe the spectral projections with respect ti the
diagonalizing basis N .
Hint: You only need to find one of these matrices because Pλ1 +Pλ2 = I ⇒ Pλ2 =
I − Pλ1 .

4. Find the matrices [Pλk ] that describes the spectral projections with respect to the
standard ON basis X .
Hint: Again, you only need to find one of these matrices.

5. In terms of the spectral decomposition the square root of T is the operator given
by √

T =
∑

λ∈sp(T )

√
λPλ

Find the matrix [
√
T ] that describes

√
T with respect to the standard ON basis.
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Solution :

1. pA = det

(
2− λ

√
3√

3 5− λ

)
= (λ−2)(λ−5)−3 = λ2−12λ+35−3 = λ2−12λ+32.

Roots are λ± =
12±
√

144−4(32)
2

= 12±
√
16

2
= 6± 2 = 8 or 4. So, spC(T ) = {4, 8}.

Eigenspaces Eλ=4 [T − λ] =

(
3
√

3√
3 1

)
→
(

1
√

3/3
0 0

)
→
(

1
√

3√
3 −3

)
.

So dim(Eλ=4) = 1 and a basis vector is f1 =

(
−1/
√

3
1

)
(or

(
1

−
√

3

)
).

For Eλ=8 = C ·
( √

3
1

)
= Cf2. Note that f1 ⊥ f2 but ||fk||2 = 3 + 1 = 4,

so to get an orthonormal basis of eigenvectors, we should replace f1, f2 with

f1 =

(
1/2

−
√

3/2

)
, f2 =

( √
3/2

1/2

)
.

2. Since Y is orthonormal and [T ]YY =

(
4 0
0 8

)
is a self-adjoint matrix, the original

operator T must be T ∗ = T . This is also answers 3.

3. If λ1 = 4, λ2 − 8 as above and we decompose v = c1f1 + c2f2 then by definition
of the spectral projections pk : V → Eλk , we have p1v = c1f1, p2v = c2f2.

[pλ1 ]YY =

(
1 0
0 0

)
and [pλ2 ]YY = I2×2 − [pλ1 ]YY =

(
0 0
0 1

)
(hence the spectral decomposition is [T ]YY = 4·[pλ1 ]YY+8·[pλ2 ]YY = [

∑
λ∈sp(T ) λpλ]YY).

To get [pλ1 ]XX = [id]XY [pλ1 ]YY [id]YX , we note that{
f1 = [id]f1 = 1

2
e1 −

√
3
2
e2

f2 = [id]f2 =
√
3
2
e1 + 1

2
e2

⇐ [id]XY =

(
1/2

√
3/2

−
√

32 1/2

)
and [id]YX = [id]−1XY . Therefore

[pλ1 ]XX =

(
1/2

√
3/2

−
√

3/2 1/2

)(
0 1
0 0

)(
1/2 −

√
3/2√

3/2 1/2

)
=

(
1/2 0

−
√

3/2 0

)(
1/2 −

√
3/2√

3/2 1/2

)
=

(
1/4 −

√
3/4

−
√

3/4 3/4

)

[Pλ2 ]XX = I2×2 − [Pλ1 ]XX =

(
3/4

√
3/4√

3/4 1/4

)
since pλ1 + pλ2 = I in the spectral decomposition. (You can check that [pλk ]2XX =
[pλk ]XX in each case, and [[pλ1 ]XX [pλ2 ]XX = 02×2.)
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4. Writing out the matrix of the square root
√
T =

√
λ1pλ1 +

√
λ2pλ2 = 2pλ1 +

√
2pλ2

is now straight forward.

[
√
T ]XX = 2[pλ1 ]XX + 2

√
2[pλ2 ]XX

= 2

(
1/4 −

√
3/4

−
√

3/4 3/4

)
+ 2
√

2

(
3/4

√
3/4√

3/4 1/4

)
=

(
1+3
√
2

2
−
√
3+
√
6

2√
3+
√
6

2
3+2
√
2

2

)

(You might want to ahead that we actually do have [
√
T ]2XX = [T ]XX .)
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